

15EC61

(06 Marks)

(06 Marks)

(10 Marks)

Module-3

- a. Sketch the QPSK wave form for the sequence 01101000. 5
 - b. Obtain the expression for average probability of symbol error for BPSK using coherent detection. (06 Marks)
 - c. Obtain the constcleation of QAM for M = 16 and draw the signal space diagram. (04 Marks)

OR

- Explain the generation and coherent detection of BFSK system. 6 a.
 - b. The binary sequence 1100100010 is applied to the DPSK transmitter
 - i) Sketch the resulting wave from at the transmitter output.
 - ii) Applying this waveform to the DPSK receiver, show that in the absence of noise, the original binary sequence is reconstructed at the receiver output. (06 Marks)
 - An FSK system transmits binary data at the rate of 2×10^6 bps. During the source of C. transmission, AWGN of zero mean and two sided PSD 10⁻²⁰Watts/Hz is added to the signal. The amplitude of the received sinusoidal wave for digit 1 or 0 is $1\mu\nu$. Determine the average probability of symbol error assuming non-coherent detection. (04 Marks)

Module-4

- a. Explain the following terms with related equations and diagram with respect to base band 7 transmission.
 - i) ISI and Nyquist condition for zero ISI
 - ii) Duoldinary signal pulse
 - iii) Modified duobinary signal pulse
 - iv) **P**artial response signals
 - v) Raised cosine spectrum.
 - b. Explain the need for precoder in a duobinary signaling. The binary sequence 111010010001101 is the input to the precoder whose output is used to modulate a duobinary transmitting filter. Obtain the precoded sequence, transmitted amplitude levels, the received signal levels and the decoded sequence. (06 Marks)

OR

- With a neat diagram, explain the concept of linear traversal filter. (06 Marks) 8 a.
 - b. Consider a channel distorted pulse x(t), at the input to the equalizer, given by
 - $x(t) = \frac{1}{1 + (\frac{2t}{T})^2}$ where 1/T is the symbol rate. The pulse is sampled at the rate 2/T and

equalized by a zero-forcing equalizer. Determine the coefficients of a five-tap zero-forcing (06 Marks) equalizer. (04 Marks)

C. Write a note on eya diagram.

Module-5

With a neat cingram explain the generation of PN sequences and state its properties. 9 a

(06 Marks) A DS spread-spectrum signal is designed so that the power ratio P_R/P_N at the intended b. receiver is 10^{-2} . If the desired $E_b/N_0 = 10$ for acceptable performance, determine the minimum value of the processing gain. (04 Marks)

Explain with neat block diagram FH spread -spectrum system. (06 Marks С.

OR

10	a.	(06 Marks)	
	b.	Write a note on application of spread spectrum in wireless LANs.	(04 Marks)
	с.	With a meat block diagram, explain the IS-95 reverse link.	(06 Marks)

* * * 2 of 2 * * *

USN	N		15EC62
		Sixth Semester B.E. Degree Examination, June/July 2019 ARM Micro Controller and Embedded Systems	i.
Tii	me:	3 hrs. Max. M	arks: 80
		Note: Answer any FIVE full questions, choosing ONF full question from each module.	
		Module-1	
1	a. b.	Explain the architecture of ARM cortex – M3 processor with neat diagram. With neat diagram, explain operation mode and privilege levels in cortex M3.	(08 Marks) (08 Marks)
		OR	
2	a. b.	What is stack? Explain push and pop operation. With the help of a neat diagram. Explain in detail special registers used in ARM cortex M3 processor.	(07 Marks) (09 Marks)
		Module-2	
3	a.	Write an ALP to calculate the sum of 1 to 10 numbers.	(08 Marks)
	b. с.	Explain the following instruction set : i) BFC ii) SBFX iii)ASR iv) MRS. Explain how CMSIS provides standard access. Interface for Embedded software.	(04 Marks) (04 Marks)
		OR	
4	a.	Write a program to blink a LED using 'C' language.	(08 Marks)
	b. с.	Explain the following assembler directives AREA, ENTRY, DCB, ALIGN. Explain different bus interfaces supported by cortex M3.	(04 Marks) (04 Marks)
		Module-3	
5	a.	Explain how embedded system are classified.	(08 marks)
	b.	With neat block diagram, explain the element of embedded system.	(08 Marks)
		OR	
6	a.	Differentiate between RISC and CISC.	(04 Marks)
	b.	Explain how program memory are classified.	(08 Marks)
	С.	Explain how brown-out protection circuits works.	(04 Marks)
		Module-4	
7	a.	What are the operational and nonoperational attributes of an embedded systems.	(10 Marks)
	b.	Explain different types of serial interface bus used in automotive communication.	(06 Marks)
		OR	
8	a. b	Explain fundamental issues in hardware software co-design.	(06 Marks)
	b.	Explain with a neat block diagram how source file to object file translation take pl	
	C.	Explain super loop based approach of embedded firmware design.	(06 marks) (04 Marks)
			······································

1 of 2

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and or equations written eg, 42+8 = 50, will be treated as malpractice.

CBCS SCHEME

1990

1992

-

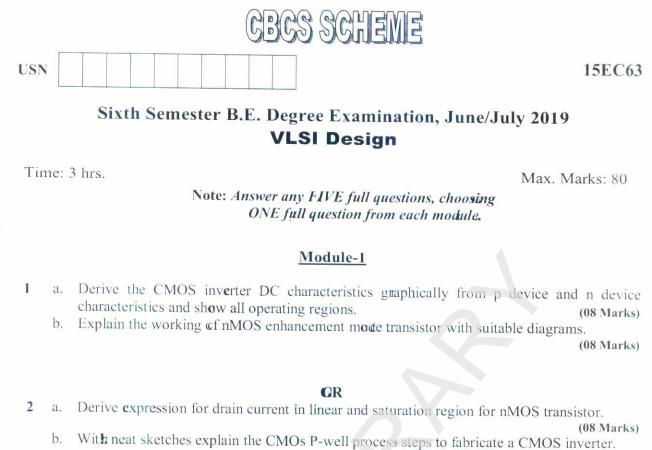
190

15EC62

(08 marks)

(04 marks)

Module-5

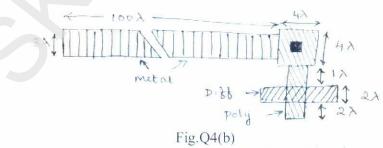

- 9 a. With neat diagram explain operating system architecture.
 - b. Explain how operating systems are classified.
 - c. Differentiate between hard real time system and soft real time system with an example for each. (04 Marks)

@R

- 10 a. With neat diagram, explain embedded system development environment. (08 marks)
 - b. For the following jobs calculate the tumaround time, waiting time using preemptive SJF scheduling algorithm. (04 Marks)

Jolls	CPU bust time	Arrival time
1	10	0.0
2	2	3.0
3	1	4.0
4	4	5.0

c. Write a note on IAP [In Application Programming] and in system programming. (04 Marks)



(08 Marks)

3 a. Write the lambda based design rules for separation of layers and transistors. (06 Marks)
 b. Draw circuit, stick and layout diagram for nMOS shift register cell. (10 Marks)

OR

a. Define sheet resistance (R_s) standard unit of capacitance (□Cg) and delay unit (τ) (06 Marks)
b. Calculate the capacitance of the structure given below in Fig.Q4(b). (10 Marks)

Area capacitance value for metal 1 to substrate $= 0.3 \text{pF} \times 10^{-4}/\mu\text{m}^2(0.075 \text{ relative value})$ Area capacitance value for diffusion to substrate $= 1 \text{pf} \times 10^{-4}/\mu\text{m}^2(0.25 \text{ relative value})$ Area capacitance value for polysilicon to substrate $= 0.4 \text{ pF} \times 10^{-4}/\mu\text{m}^2(0.1 \text{ relative value})$.

2. Any revealing of identification, appeal to evaluator and /or equations written cg. 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

4

1 of 2

- Obtain the scaling factor for the following device parameters : 5 a.
 - i) gate capacitance
 - ii) gate area
 - iii) saturation current (Idss)
 - iv) channel resistance (Ron)
 - v) maximum operating frequency (f_0)
 - vi) power dissipation per gate (Pg)
 - vii) current density (J)
 - viii) gate delay (T_d).
 - b. With a neat diagram explain 4×4 Barrel shifter.

(08 Marks) (08 Marks)

OR

6	a.	Explain the general arrangement of a 4 bit data path for processor.	(08 marks)
	b.	Describe Mancllester carry chain element.	(08 Marks)

Module-4

7	a.	Discuss the architectural issues to be followed in the design of VLSI sub system.	(05 Marks)
	b.	Explain in detail the general structure of an FPGA fabric.	(06 Marks)

- b. Explain in detail the general structure of an FPGA fabric.
- c. Explain switch logic implementation of CMOS 5 way selector with neat circuit diagram.

(05 Marks)

(CR

8	a.	Explain the structured design approach for the implementation of a parity generator.		
			(08 marks)	
	b.	Explain dynamic CMOS logic with example.	(08 Marks)	

Module-5

9	a.	Explain 3 transistor dynamic RAM cell with schematic diagram.	(06 Marks)
	b.	Explain any two fault models in combinational circuits.	(06 Marks)
	C.	Write a note on automatic test pattern generation.	(04 Marks)

OR

10	a.	write short notes on :	
		i) observability and controllability	
		ii) Built In Self Test (BIST).	(08 Marks)
	b.	Explain nMOS pseudo static RAM cell with schematic diagram.	(08 Marks)

2 of 2

* * *

			CBCS SCHEME	
	USN	N		15EC64
			Sixth Semester B.E. Degree Examination, June/July 2019 Computer Communication Networks	
	Tii	me:	3 hrs. Max. Mar	ks: 80
			Note: Answer any FIVE full questions, choosing ONE full question from each modula.	
			Module-1	
	1	a. b. c.	With a neat diagram, explain the responsibilities of each layer in TCP/IP protocol su	06 Marks) 04 Marks) uite. 06 Marks)
1	2	a. b.	example. (0 Explain stop and wait protocol and show how adding sequence numbers can duplicates with the help of flow discussion.	8 Marks)
-			Module-2	
	3	a. b.	in CSMA. (0 A pure ALOHA network transmits 200-bit frames on a shæred channel of 200kbps. through put if the system (all stations together) produces? i) 1000 frames per second?	8 Marks)
		C.		4 Marks) 4 Marks)
5				
	4	a. b.	lengths? (0 Identify if the following Ethernet MAC addresses are unicast, multicast or broadcast i) 47 : 20 : 1B : 2E : 08 : EE ii) EE : FE : 10 : 01 : 11 : 00	7 Marks)
		c.	What are the two effects of the bridges on an Ethernet LAN? Explain with a neat of	

5	a.	With a neat diagram, explain two types of networks defined in Bluetooth.	(04 Marks)
		What is hidden station problem in wireless LAN's? Give solution for it.	(06 Marks)
	C.	Describe WLAN. How is it used in grouping of stations?	(06 Marks)

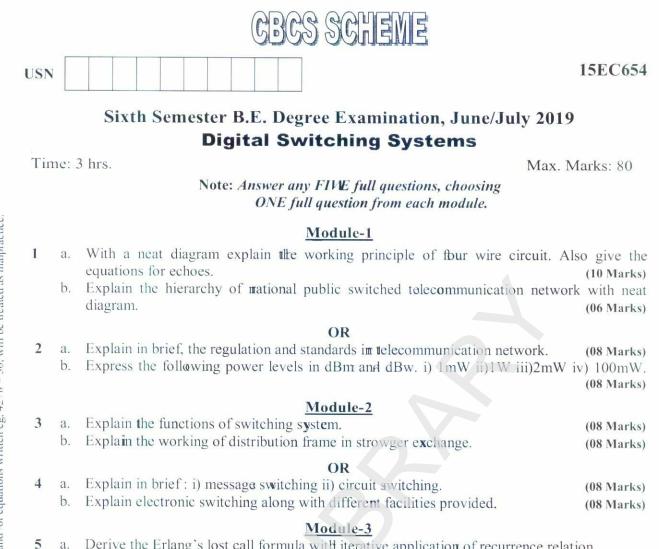
1 of 2

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice.

- 6 a. Explain the occupation of the address space in classful addressing. (04 Marks)
 - A block of addresses is granted to a small organization. We know that one of the addresses is 167.199.170.82/27. What is the first address, last address and total number of address of the block? (06 Marks)
 - c. With a neat diagram, explain how can a NAT help in address translation. (06 Marks)

7 a. With a neat diagram explain 1PW4 datagram format? (08 Marks)
b. What is the two addresses approach in mobile host? Explain the significance of home agent and foreign agent with a diagram. (08 Marks)

OR


- 8 a. With relevant diagrams describe Distance Vector Routing. What is two node instability in DVR? (10 Marks)
 - b. Explain operation of Border Gateway Protocol (BGP) with a diagram. (06 Marks)

Module-5

- 9 a. Explain connection less and connection oriented service showing the movement of packets using time line. (08 Marks)
 - b. Explain why the size of the send window in Go back N must be less than 2^{m} ? (08 Marks)

OR

- 10 a. Explain TCP connection establishment and connection termimation using three way hand (10 Marks)
 - b. Describe slow start algorithm for handling congestion in TCP. (06 Marks)

- Derive the Erlang's lost call formula with iterative application of recurrence relation. a.
 - b. A group of 20 trunks provides a grade of service of 0.01 when offered 12E of traffic. How much is the grade of service improved if 2 extra trunks are added to the group? How much does the grade of service deteriorates if one trunk is out of service? (07 Marks)

(09 Marks)

OR

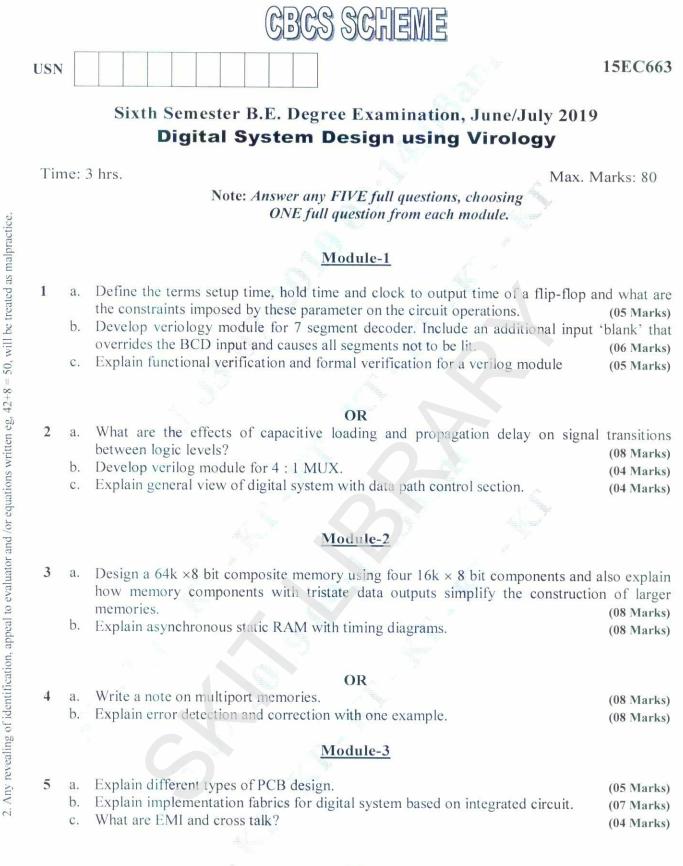
Design a grading for connecting 20 trunks to switches having ten outlets. a. (08 Marks) Derive the expression for minimum number of cross points in a three stage network with M b. incoming trunks and N outgoing trunks for (M > N) case. (08 Marks)

Module-4

a.	Explain Time-Space-Time switch with suitable diagram.	(08 Marks)
b.	Explain synchronization and frame alignment of PCM signals in digital exchange.	(08 Marks)
	OR	
a.	Briefly explain basic software architecture of a DSS.	(08 Marks)
b.	With the help of features flow diagram, explain call forwarding feature.	(08 Marks)
	Module-5	
a.	Describe the various organizational interfaces of DSS central office.	(10 Marks)
b.	Briefly explain strategy for improving software quality with diagram.	(06 Marks)
	OR	

10 a. Explain generic switch hardware architecture with neat diagram. (08 Marks) Write short note on : i) Reliability analysis ii) Recovery strategy. b. (08 Marks)

* * * * *


2. Any revealing of identification, appeal to evaluator and /or equations written cg, 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

6

7

8

9

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

6

a. Briefly explain programmable array logic. (08 Marks)
 b. Explain signal integrity issue in PCB design and also explain measures to reduce these issues. (08 Marks)

1 of 2

(08 Marks)

(08 Marks)

Module-4

- 7 a. Explain the serial transmission of 64 bit data within clock domain with timing diagram. (08 Marks)
 - b. Explain the following serial interface standards for connecting I/O devices.
 i) RS232 ii) Fire wire. (08 Marks)

OR

8 a. Explain any 4 analog sensors.b. Explain the concept of multiplexed buses

Module-5

9 a. Explain logical partitioning and physical partitioning of a transport monitoring system.

	A1	1	(08 Mark	(s)
b.	Explain fault model and fault simulation.		(08 Mark	(s)

OR

10 a. Explain 4 bit LFSR and CFSR for generating pseudorandom test vectors.(08 Marks)b. Explain briefly area, power and timing optimization in digital circuits.(08 Marks)

2 of 2